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Discrete Helly type theorems
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Abstract

Let P be a set of points and S a family of regions in the
plane. We consider the following type of problems. Let
k be some fixed positive integer. If for every k points
in P , there exists a region S ∈ S containing all of the
k points, then what is the size of the smallest subset
of the regions whose union covers P? We also consider
the dual problems: if every k of the regions intersect at
a common point in P , what is the smallest subset of
points in P that together hit all regions in S?

The families of regions we consider are halfspaces,
convex pseudodisks, and axis-parallel rectangles in the
plane. We prove tight results for a small value of k
for some of these. For all of our questions, it can be
shown that the answer depends only on k, i.e. it is a
constant for any fixed k, by using a technique similar to
that used in the proof of the Hadwiger-Debrunner (p, q)
theorem due to Alon and Kleitman. However, even for
small values of k, determining the right answer seems
non-trivial.

1 Introduction

Let C be a finite collection of convex sets in Rd. Helly’s
theorem [1] (see also Chapter 1 of Matousek’s book [2])
states that if every d+1 of these sets intersect at a com-
mon point in Rd then all the convex sets in C intersect
at a common point in Rd.

It is natural to ask if a discrete version of Helly’s
theorem is true. Instead of requiring that every d+ 1 of
convex sets intersect at some point in Rd, suppose that
we require that they intersect at some point in a discrete
set of points P . Then, can we conclude that all the
convex sets intersect at some point in P? Unfortunately,
this statement is not true even if we require that every
k of the convex sets intersect at a point in P for some
large constant k ≥ d+ 1 and we want to conclude that
all convex sets in C can be hit by some large constant
number of points. To see this, consider a set P of n
points in convex position in Rd and let C be the set of
the convex hulls of every subset of P of size greater than
n − n

k . Then the total size (in terms of the number of
points of P contained) of any subset of k sets in C is
more than (k−1)n and thus they must have a common
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point in P . On the other hand, no subset of P of size
less than n/k can hit all the convex sets in C.

We show that such a statement is true for some simple
regions in the plane. As mentioned earlier, for most of
the cases we consider, the technique used by Alon and
Kleitman [3] (see [4, 5, 6] and the references therein
for more recent work on the problem) can be used to
show that the answer is a constant. The basic idea is
as follows. Suppose that we are given a set of points
P and a set of regions S such that for each subset of k
points in P , there exists a region S ∈ S containing all
points in that subset. Then, for the families of regions
we consider, it can be shown that there exists some re-
gion S ∈ S that contains a constant fraction (depending
on k) of the points in P . Then, using LP-duality, one
can assign weights to the regions such that the total
weight of regions containing any particular point is at
least εW where ε is a constant (which depends on k)
and W is the total weight of all the regions. Finally,
using strong ε-nets whose size depends only on ε, we
can obtain a set of points of constant size that hits all
the regions. A similar approach works in the dual set-
ting too. However, the constants obtained from such
techniques are large mainly due to the constants in the
bounds on the size of ε-nets. Kleitman et. al. [7] consid-
ered the question of hitting convex sets in the plane with
the minimum number of points (using arbitrary points
in the plane) where three out of every four intersect at
a common point. The main goal was to find a better
constant using a more direct approach. They proved a
lower bound of 3 but the upper bound obtained even
for such a (apparently) simple problem is significantly
higher: 13. This has not yet been improved.

Questions similar to ours are considered in [8]. In
their setting the family of regions either consists of a
single region (from some family of regions) or regions
obtained by translating and rotating a single region.
Halman [9] also studied ‘discrete Helly-type theorems’
that are different from ours. An excellent survey on
Helly type theorems is [10].

2 Halfspaces in R2

We start with a simple Helly-type result for halfspaces
in the plane.

Theorem 1 Let P be a finite set of n points and H a
set of halfspaces in the plane. If every subset of 3 points
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in P belongs to some halfspace H ∈ H then there exists
two halfspaces H1, H2 ∈ H whose union covers P .

Proof. Let PCH ⊆ P denote the subset of points in P
that lie on the boundary of the convex hull CH(P ) of P .
Consider the halfspace H1 ∈ H containing the largest
number of points from PCH . Note that since there is a
halfspace in H covering any triple of points in PCH , H1

contains at least three points of PCH .
If H1 contains all points in PCH , then H1 contains all

points in P and the theorem follows. Otherwise, there
are two edges on the boundary of CH(P ) such that H1

contains exactly one endpoint of each of the edges. Let
p and q be the endpoints of the edges that are contained
in H1. See figure 1. Note that p and q cannot be the
same point since this would mean that H1 contains only
one point of PCH and we argued earlier that H1 contains
at least three points of PCH .

The line through p and q splits CH(P ) into two re-
gions, one of which is covered by H1. Let A be the
region covered by H1 and let B be the other region. Let
r ∈ PCH be a point not contained in H1. By assump-
tion, there exists a halfspace, H2, that contains p, q,
and r. Since H2 contains p and q, H2 covers either A
or B. If H2 covered A, then it would contain all points
of PCH in H1 and the additional point r ∈ PCH . This
would contradict the maximality of H1. Thus H2 must
cover B. Thus H1 ∪H2 covers CH(P ) and the theorem
follows. �

We now show that the ‘3’ in Theorem 1 is tight i.e.,
it cannot be replaced by ‘2’. To this end, we construct
a set of points P and a set of halfspaces H so that every
pair of points in P is covered by a halfspace in H and
yet no pair of halfspaces in H cover all points in P .

Figure 2 shows a disk D and three arcs with a very
large radius of curvature so that any tangent to any of
the arcs passes through the discD and does not intersect
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Figure 1: LetH1 be the halfspace that contains the most
points in PCH . As depicted, the only positioning of any
halfspace H2 containing p, and q, and a point r 6∈ H1

that avoids parts of P \H1 must contain more points on
the convex hull of P than H1, which is a contradiction.
The dashed line, H2, can therefore not exist and we are
left with a halfspace that covers the remaining points
not contained in H1.

any of the other arcs. We construct a point set P with
n points by distributing n/3 points uniformly on each
of the three arcs. We define the set of halfspaces H as
follows. For each point p on some arc li, i ∈ {0, 1, 2}, let
Hp be a halfspace not containing p and containing all
other points on li so that the boundary of Hp is parallel
and arbitrarily close to the tangent to li at p. Note that
Hp contains all points on lj where j = (i+1) mod 3 and
does not contain any of the points in lk where k = (i−1)
mod 3. H is the set {Hp : p ∈ P}.

For any two points p, q ∈ P , we argue that there is a
halfspace in H containing both p and q. There are two
cases depending on whether p and q lie on the same arc
or on different arcs. If p and q lie on the same arc li,
then Hr where r is any point on lk where k = (i − 1)
mod 3 contains both p and q. If p and q lie on different
arcs then without loss of generality, assume that p lies
on li and q lies on lj where j = (i + 1) mod 3. Then
Hr, where r is any point on li other than p, contains
both p and q.

Now, we argue that no two halfspaces in H cover all
points in P . To see this consider any pair of halfspaces
Hp and Hq. If both p and q lie on the same arc li then
none of the points in lk where k = (i − 1) mod 3 are
covered by Hp ∪Hq. If p and q lie on different arcs, we
assume without loss of generality that p lies on an arc li
and q lies on lj where j = (i+1) mod 3. Then Hp∪Hq

does not cover p.

Remark. The above example also improves a result
from [11]. Lemma 17 of [11] shows that given a set P
of n points in the plane, it is not always possible to
hit all halfspaces in the plane containing more than εn
points of P with just two points in P if ε < 3/5. Our
construction improves the bound 3/5 to 2/3 since all the
halfspaces in our example contain 2n/3 − 1 points and
it is easily seen that no two points hit all halfspaces.

In our example, two halfspaces barely fail to cover
all the points when every pair of points in P is covered
by a halfspace. It seems intuitive that three halfspaces
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Figure 2: Counterexample that shows the tightness of
Theorem 1.
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should suffice to cover all points under this constraint.
Indeed this is true and we show this later in Theorem 7.

3 Convex pseudodisks in the plane

A set of simply connected regions in the plane form a
family of pseudodisks if the boundaries of any pair of
regions either do not intersect or intersect at exactly
two points. Furthermore, there are no tangential inter-
sections, i.e., at each intersection the boundaries prop-
erly cross. Examples of families of pseudodisks include
disks, squares, unit height rectangles, and homothets of
a convex region.

Let P ⊂ R2 be a set of points and D a family of
convex pseudodisks in the plane. We will show that if
every three pseudodisks in D intersect at a point in P ,
then there exist two points in P that together hit all the
pseudodisks in D.

We first need a definition and some lemmas.

Definition 1 For any disk D ∈ D we define its core
core(D) with respect to P as the convex hull of D ∩ P .
See Figure 3.

Even though the core of a pseudodisk D is defined
with respect to the point set P , we will skip the reference
to P when it is clear from the context.

D

core(D)

Figure 3: The dashed line outlines core(D).

Note that any pseudodisk D ∈ D contains its own
core since D is convex. Let C be the set of cores of the
disks D ∈ D.

Lemma 2 The intersection of all cores in C is non-
empty.

Proof. Since every triple of convex pseudodisks in D
intersect at some point p ∈ P and such a point is con-
tained in the cores of all three of them, all triples of cores
in C have a non-empty intersection. Thus, by Helly’s
theorem all cores in C intersect at a point in R2 (which
may not be a point in P ). �

The next lemma follows from Lemma 5 in [12] by
using an empty set as the set of compulsory edges.

Lemma 3 There exists a straight-edge plane triangu-
lation on P denoted T such that the points and edges
inside any pseudodisk in D form a connected subgraph
of T .

Lemma 5 in [12] is for arbitrary non-convex k-admissible
regions (which includes pseudodisks) and therefore al-
lows the edges to be curved. However, for convex pseu-
dodisks, it does yield a straight-edge drawing. In fact,
it shows that any maximal subset of the

(
n
2

)
edges de-

fined by P which are pairwise non-crossing and which
do not cut across any of the cores of the regions form
such a triangulation. Note that if D is a set of circular
disks in the plane, then the Delaunay triangulation of P
provides the triangulation claimed in the lemma above.

Lemma 4 If the core of some D ∈ D intersects an edge
e ∈ T , then D must contain at least one of the endpoints
of e.

Proof. Since the edges of T are straight line segments,
the points and edges inside any core in C also form a
connected sub-graph of T . If the core of a disk D ∈ D
intersects an edge e ∈ T but does not contain either
endpoint of e, then we obtain a contradiction since the
edges lying in core(D) cannot form a connected sub-
graph of T . Thus core(D) must contain an endpoint of
e. �

Lemma 5 There exist two points p, q ∈ P that hit all
disks in D.

Proof. Let x ∈ R2 be a point in the common inter-
section ∩D∈D core(D) of all cores. By lemma 2, such a
point x exists. Let T be the triangle in the triangulation
T containing x. Since all the cores contain x, all cores
intersect the edges of T and thus, by Lemma 4 contain
at least one of the three corners of T . In other words,
the three corners of T hit all pseudodisks.

We now show that one of the corners is redundant
and can be dropped. Assume, for contradiction that all
three corners of T are necessary i.e. for each corner there
exists a pseudodisk that is hit only by that corner among
the three corners. These three pseudodisks intersect
inside T at x and, by definition, at some point in p ∈
P which must lie outside T . Since the intersection of
the three convex pseudodisks is convex, all three disks
contain the segment joining x and p. Therefore, they all
intersect some edge e ∈ T . However, by Lemma 4 this
means that all three disks are hit by the two endpoints
of e contradicting the assumption that all three corners
are necessary for hitting the three disks. �

Thus we have proved the following theorem.

Theorem 6 Given a set of points P and set of con-
vex pseudodisks D in the plane s.t. every triple of pseu-
dodisks in D intersects at a point in P , there exists a set
of two points {p, q} ⊆ P which intersects each D ∈ D.

Remark. The above theorem implies that given a
set of n points and a set D of convex pseudodisks in the
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plane, all pseudodisks in D containing more than 2n/3
points can be hit by two points. This is because any
three sets containing more than 2n/3 elements of a set
of size n must have a common element. This generalizes
Theorem 18 of [11] which proves this for disks.

Note that Theorem 6 is true for halfspaces in the
plane too since we can think of halfspaces as disks of
infinite radius. This can be used to prove the following
theorem.

Theorem 7 Let H be a set of halfspaces and let P be a
set of points in the plane such that for each pair of points
in P , there is a halfspace in H covering both points.
Then, three of the halfspaces in H cover all points in P .

Proof. Let H′ be a set of halfspaces consisting of the
complements of the halfspaces in H. Assume for con-
tradiction that no three halfspaces in H cover all points
in P . This means that every triple of halfspaces in H′
intersects at a point in P . Since the halfspaces in H′
can be thought of as disks of infinite radius, we can ap-
ply Theorem 6 to H′ and P to conclude that two points
p, q ∈ P hit all halfspaces in H′. This implies that each
halfspace in H avoids at least one of the points in {p, q}.
This contradicts the assumption that for every pair of
points in P , there is some halfspace in H that contains
both. �

4 Axis-parallel rectangles in R2

In this section, we prove a couple of simple discrete
Helly-type theorems for axis-parallel rectangles in the
plane.

Theorem 8 Let P be a set of points and let R be a
set of axis-parallel rectangles in the plane s.t. for every
triple of points p, q, r ∈ P , there exists a rectangle R ∈
R containing all three. Then, 2 of the rectangles in R
together cover all points in P . Furthermore, the number
2 here is tight.

Proof. Let l, r, t and b be the leftmost, rightmost, top-
most and bottom-most points respectively in P . Note
that these need not be distinct. Then, the rectangle
containing l, r and t and the rectangle containing l, r
and b together cover the convex hull of the points in P
and therefore all points in P . To see that the number
2 is tight, consider the four points (1, 0), (−1, 0), (0, 1)
and (0,−1). For every three of these points, we can add
to our family of rectangles, a rectangle containing these
three but not the fourth. �

Theorem 9 Let P be a set of points and let R be a
set of axis-parallel rectangles in the plane s.t. for every
pair of points p, q ∈ P , there exists a rectangle R ∈ R
containing both p and q. Then, there are 5 rectangles
in R whose union covers all points in P . Furthermore,
the constant 5 is tight.

Figure 4: Four axis-parallel rectangles do not cover all
points

Proof. Let l, r, t and b be the leftmost, rightmost, top-
most and bottom-most points respectively in P . For
any pair x, y ∈ {l, r, t, b} of points, denote by Rx,y any
of the rectangles in R containing both x and y. We claim
the the following five rectangles cover all the points in
P : Rl,r, Rl,t, Rt,r, Rl,b and Rb,r. To see this note that if
a point p ∈ P is not covered by Rl,r then it lies either
above or below Rl,r. If it lies above, it lies in the union
of Rl,t and Rt,r. Similarly, if it lies below, it lies in the
union of Rl,b and Rb,r.

We now give an example of a set of points and a set of
axis-parallel rectangles satisfying the conditions of the
theorem but in which no four of the rectangles cover all
points. The point set is shown in Figure 4. Each line
segment si in the figure extends a short distance from
pi in the direction of p(i+1)mod4, so that no two of them
are intersected by the same vertical or horizontal line.
The point pc has an x-coordinate between those of p1
and p3, and a y-coordinate between those of p2 and p3.

Our point set includes the points p1, p2, p3, p4 and pc.
In addition, on each segment si, we place four more
(distinct) points. Each segment si thus has five points
including pi.

The family of rectangles is the following. Let i ∈
{1, 2, 3, 4} and let j = (i + 1) mod 4. For each point
q ∈ sj , we add the axis-parallel rectangle with corners
pi and q to our set. We also add the rectangle with
corners x and y for every pair x, y where x lies in s1
and y lies in s3. Similarly, we add the rectangle with
corners x and y for every pair x, y where x lies in s2 and
y lies in s4. Observe that for each pair of points in our
point set, we have added a rectangle containing both,
thus satisfying the conditions of the theorem.

We now show that no four rectangles in our family
cover all points in our point set. To see this, assume
to the contrary that it is possible to cover all points
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with four of the rectangles. Consider the segment si,
i ∈ {1, 2, 3, 4}. Since si has five points, at least one of
the four rectangles that together cover all points must
contain two of the points in si. This means that we are
forced to include one of the rectangles which has one
corner at pi and another corner in sj where j = (i+ 1)
mod 4. Since none of these four forced rectangles cover
pc, we derive a contradiction. The theorem follows. �

5 Open Problems

The following are some of the simple cases for which we
are currently unable to obtain a precise answer.

Open problem 1. Let D be a set disks and let P
be a set of points in R2 s.t. for every triple of points in
P , there is a disk in D covering the three points. How
many disks of D suffice to cover all points (in the worst
case)? We believe that two disks in D suffice. Note that
2 is a lower bound even for halfplanes, as shown in this
paper.

Open Problem 2. Let R be a set of axis-parallel
rectangles and let P be a set of points in the plane s.t.
every triple of rectangles in R intersects at a point in P .
How many points from P suffice to hit all rectangles in
R. There is a simple example showing that the answer
is at least 2 [9]. We are currently unable to prove that
two points suffice, nor do we have an example in which
three points are necessary.
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